Assignment VI: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. None of the following is a function. Make a change to the domain or to the co-domain so they become functions
(i) $f: R \rightarrow R$ such that $f(x)=\frac{x}{\sqrt{x-1}}$
(ii) $f: R \rightarrow[-1,2]$ such that $f(x)=3 \sin (2 x)$
(iii) $f: R \rightarrow[2,3]$ such that $f(x)=\sin (2 x)+3$
(iv) $f:[0,7] \rightarrow[0,2]$ such that $f(x)=\sqrt{x}$

QUESTION 2. Which of the following functions is (are) a 1-1 or onto or bijective or neither 1-1 nor onto
(i) Let $A=\{1,4,0,6\}$ and $f: P(A) \rightarrow\{0,1,2,3,4\}$ such that $f(a)=|a|$ (where $|a|$ means the cardinality of a.)
(ii) Let $A=\{1,4,0,6\}$ and $f: P(A) \rightarrow\{0,1,2,3,4,5\}$ such that $f(a)=|a|$ (where $|a|$ means the cardinality of a.)
(iii) Let $f:[-2, \infty) \rightarrow[0, \infty]$ such that $f(a)=a^{2}$
(iv) Let $f:(-\infty, 0) \rightarrow(0, \infty]$ such that $f(a)=\frac{1}{a-1}$
(v) $f: R \rightarrow[2,4]$ such that $f(x)=\sin (2 x)+3$

QUESTION 3. Let W be the universal set where $W=\{2,\{2\},\{3,4\}, e, r, 3,4\}$. Given $A=\{2,3, r\}, B=\{\{3,4\}, r, 2\}$
(i) Find A^{\prime}
(ii) Find $A \cap B^{\prime}$
(iii) Find $A-B$
(iv) Find $(A \cap B)^{\prime}$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Hanin Alrais
Qi)
(i) $(1, \infty) \longrightarrow\left(\frac{2, \infty)}{\frac{\text { minimum co }}{}}\right.$
codomain is [-3, 3]. Any interval contains [-3, 3] will
(ii)do, for example [-3, 100) will do too, but $[-2,7)$ will not
(ii) $(-\infty,+\infty) \rightarrow \frac{[-3,3 \mid}{\mid \text { Minimum codomain }[2,4] \text { but any interval contains }[2,4] \text { will do. }}$
(iii) $(-\infty,+\infty) \rightarrow[2,4]$

Minimum codomain is [0, infinity) any interval contains [0, infinity) will do. For example (-infinity, infinity) will do
(iv) $[0,+\infty] \rightarrow[0,+\infty]$
Note elements of $\mathrm{P}(\mathrm{A})$ are subsets of A, so if a is in $\mathrm{P}(\mathrm{A})$, then $|\mathrm{a}|=0$ (if $\mathrm{a}=$ Note elements of $P(A)$ are subsets of A, so if a is in $P(A)$, then $|a|=0$ (if $a=$
phi), or $|a|=1$ or 2 , or 3 , or 4 . Range $=$ co-domain. Hence f is ONTO but not one to one, for let $a=\{1\}, b=\{6\}$. Then a and b in $P(A)$ and $f(a)=f(b)=1$ but a not $=\mathrm{b}$
(ii) Neither By (i) f is not onto since 5 in the codomain but 5 is not in the range. Also f is not 1-1 by (i)
(iii) Note, typos error I meant (0, infinity). it is Onto but not 1-1.
(iv) Wrong question. It is not a function. I meant codomain $=\left[\begin{array}{ll}-1, & 0\end{array}\right)$. It is bijective if codomain [-1, 0).
(V) It is ONTO but not 1-1
Qu)

$$
\begin{aligned}
& W=\{2,\{2\},\{3,4\}, e, r, 3,4\} \\
& A=\{2,3, r\}, \quad B=\{\{3,4\}, r, 2\}
\end{aligned}
$$

i) $A^{\prime}=W-A=\{\{2\},\{3,4\}, e, 4\}$
ii) $A \cap B^{\prime} \rightarrow B^{\prime}=W-B=\{\{2\}, e, 3,4\}$

$$
A \cap B^{\prime}=\{3\}
$$

iii) $A-B=\{3\}$
iv) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}=\{\{2\},\{3,4\}, e, 4,3\}$

