MTH 213 Discrete Mathematics Fall 2017, 1-1

–, ID —

Assignment VI: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. None of the following is a function. Make a change to the domain or to the co-domain so they become functions

- (i) $f: R \to R$ such that $f(x) = \frac{x}{\sqrt{x-1}}$
- (ii) $f: R \to [-1, 2]$ such that f(x) = 3sin(2x)
- (iii) $f: R \rightarrow [2,3]$ such that f(x) = sin(2x) + 3
- (iv) $f: [0,7] \rightarrow [0,2]$ such that $f(x) = \sqrt{x}$

QUESTION 2. Which of the following functions is (are) a 1-1 or onto or bijective or neither 1-1 nor onto

- (i) Let $A = \{1, 4, 0, 6\}$ and $f : P(A) \to \{0, 1, 2, 3, 4\}$ such that f(a) = |a| (where |a| means the cardinality of a.)
- (ii) Let $A = \{1, 4, 0, 6\}$ and $f : P(A) \to \{0, 1, 2, 3, 4, 5\}$ such that f(a) = |a| (where |a| means the cardinality of a.)
- (iii) Let $f: [-2, \infty) \to [0, \infty]$ such that $f(a) = a^2$
- (iv) Let $f: (-\infty, 0) \to (0, \infty]$ such that $f(a) = \frac{1}{a-1}$
- (v) $f: R \to [2, 4]$ such that f(x) = sin(2x) + 3

QUESTION 3. Let W be the universal set where $W = \{2, \{2\}, \{3,4\}, e, r, 3, 4\}$. Given $A = \{2, 3, r\}, B = \{\{3, 4\}, r, 2\}$

- (i) Find A'
- (ii) Find $A \cap B'$
- (iii) Find A B
- (iv) Find $(A \cap B)'$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Hanin Alrais
Hanin Alrais
(1) (1) (15
$$\infty$$
) (2, ∞)
Infinitum codomain is [-3, 3]. Any interval contains [-3, 3] will
(i) ($+\infty_{3}+\infty$) (5, $-5, 3$, 100) will do too, but [-2, 7) will not
(ii) ($+\infty_{3}+\infty$) (2, $-5, 3$, 100) will do too, but [-2, 7) will not
(iii) ($-\infty_{3}+\infty$) (2, $-3, 3$]
Minimum codomain [2, 4] but any interval contains [2, 4] will do.
(1'i) ($-\infty_{3}+\infty$) (2, $-3, 3$]
(i'i) ($-\infty_{3}+\infty$) (2, $-3, 3$]
Note elements of P(A) are subsets of A, so if a is in P(A), then [a] = 0 (if a =
phi), or [al = 1 or 2, or 3, or 4. Range = co-domain. Hence f is ONTO but not
one to one, for let a = {1}, b = {6}. Then a and b in P(A) and {(a) = {(b) = 1 but}}
(i) (be the control at a = {1}, b = {(b). Then a and b in P(A) and {(a) = {(b) = 1 but}}
(ii) Note, typos error I meant (0, infinity). it is Onto but not 1-1.
(iv) Wrong question. It is not a function. I meant codomain = {-1, 0}. It is
bijective if codomain {-1, 0}.
(v) It is ONTO but not 1-1
(v) I